搜索
热搜: music
门户 History History of the natural sciences Physics view content

Contemporary and Particle Physics

2014-3-22 18:34| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: Quantum field theory In this Feynman diagram, an electron and a positron annihilate, producing a photon (represented by the blue sine wave) that becomes a quark–antiquark pair. Then one radiates a gl ...
Quantum field theory


In this Feynman diagram, an electron and a positron annihilate, producing a photon (represented by the blue sine wave) that becomes a quark–antiquark pair. Then one radiates a gluon (represented by the green spiral).
As the philosophically inclined continued to debate the fundamental nature of the universe, quantum theories continued to be produced, beginning with Paul Dirac's formulation of a relativistic quantum theory in 1928. However, attempts to quantize electromagnetic theory entirely were stymied throughout the 1930s by theoretical formulations yielding infinite energies. This situation was not considered adequately resolved until after World War II ended, when Julian Schwinger, Richard Feynman, and Sin-Itiro Tomonaga independently posited the technique of renormalization, which allowed for an establishment of a robust quantum electrodynamics (QED).[45]

Meanwhile, new theories of fundamental particles proliferated with the rise of the idea of the quantization of fields through "exchange forces" regulated by an exchange of short-lived "virtual" particles, which were allowed to exist according to the laws governing the uncertainties inherent in the quantum world. Notably, Hideki Yukawa proposed that the positive charges of the nucleus were kept together courtesy of a powerful but short-range force mediated by a particle intermediate in mass between the size of an electron and a proton. This particle, called the "pion", was identified in 1947, but it was part of a slew of particle discoveries beginning with the neutron, the positron (a positively charged antimatter version of the electron), and the muon (a heavier relative to the electron) in the 1930s, and continuing after the war with a wide variety of other particles detected in various kinds of apparatus: cloud chambers, nuclear emulsions, bubble chambers, and coincidence counters. At first these particles were found primarily by the ionized trails left by cosmic rays, but were increasingly produced in newer and more powerful particle accelerators.[46]

Outside of particle physics, significant advances of the time were:

Invention of lasers (Nobel Prize in Physics of 1964).
Experimental and theoretical researches of superconductivity, especially invention of a quantum theory of superconductivity by Vitaly Ginzburg and Lev Landau (Nobel Prize of 2002) and, later, its explanation with Cooper pairs (also a Nobel Prize). The Cooper pair was one of early examples of a quasiparticle.
Unified field theories
Main article: Unified field theory
Einstein deemed that all fundamental interactions in nature can be explained in a single theory. Unified field theories were numerous attempts to "merge" several interactions. One of formulations of such theories (as well as field theories in general) is a gauge theory, a generalization of the idea of symmetry. Eventually the Standard Model (see below) succeeded in unification of strong, weak, and electromagnetic interactions. All attempts to unify gravitation with something else failed.

[icon]    This section requires expansion. (January 2014)
Standard Model


The Standard Model
Main article: Standard Model
The interaction of these particles by scattering and decay provided a key to new fundamental quantum theories. Murray Gell-Mann and Yuval Ne'eman brought some order to these new particles by classifying them according to certain qualities, beginning with what Gell-Mann referred to as the "Eightfold Way". While its further development, the quark model, at first seemed inadequate to describe strong nuclear forces, allowing the temporary rise of competing theories such as the S-Matrix, the establishment of quantum chromodynamics in the 1970s finalized a set of fundamental and exchange particles, which allowed for the establishment of a "standard model" based on the mathematics of gauge invariance, which successfully described all forces except for gravitation, and which remains generally accepted within its domain of application.[44]

The Standard Model groups the electroweak interaction theory and quantum chromodynamics into a structure denoted by the gauge group SU(3)×SU(2)×U(1). The formulation of the unification of the electromagnetic and weak interactions in the standard model is due to Abdus Salam, Steven Weinberg and, subsequently, Sheldon Glashow. Electroweak theory was later confirmed experimentally (by observation of neutral weak currents),[47][48][49][50] and distinguished by the 1979 Nobel Prize in Physics.[51]

Since the 1970s, fundamental particle physics has provided insights into early universe cosmology, particularly the Big Bang theory proposed as a consequence of Einstein's general theory of relativity. However, starting from the 1990s, astronomical observations have also provided new challenges, such as the need for new explanations of galactic stability (the problem of dark matter), and accelerating expansion of the universe (the problem of dark energy).

While accelerators have confirmed most aspects of the Standard Model by detecting expected particle interactions at various collision energies, no theory reconciling general relativity with the Standard Model has yet been found, although supersymmetry and string theory were believed by many theorists to be a promising avenue forward. The Large Hadron Collider, however, which began operating in 2008, has failed to find any evidence whatsoever that is supportive of supersymmetry and string theory.[52]

Cosmology
Main article: Physical cosmology
Cosmology may be said to have become a serious research question with the publication of Einstein's General Theory of Relativity (1916); although it did not enter the scientific mainstream until a period known as the golden age of general relativity.

About a decade later (in the midst of the Great Debates), Hubble and Slipher discovered the expansion of universe in the 1920s measuring the redshifts of Doppler spectra from galactic nebulae. Using Einstein's general relativity, Lemaître and Gamow formulated what would become known as the big bang theory. A rival, called the steady state theory was devised by Hoyle, Gold, Narlikar and Bondi.

Cosmic background radiation was verified in the 1960s by Penzias and Wilson, and this discovery favoured the big bang at the expense of the steady state scenario. Later work was by Smoot et al. (1989), among other contributors, using data from the Cosmic Background explorer (CoBE) and the Wilkinson Microwave Anistropy Probe (WMAP) satellites that refined these observations. The 1980s (the same decade of the COBE measurements) also saw the proposal of inflation theory by Guth.

Recently the problems of dark matter and dark energy have risen to the top of the cosmology agenda.

Higgs boson


One possible signature of a Higgs boson from a simulated proton–proton collision. It decays almost immediately into two jets of hadrons and two electrons, visible as lines.
On July 4, 2012, physicists working at CERN's Large Hadron Collider announced that they had discovered a new subatomic particle greatly resembling the Higgs boson, a potential key to an understanding of why elementary particles have mass and indeed to the existence of diversity and life in the universe.[53] For now, some physicists are calling it a "Higgslike" particle.[53] Joe Incandela, of the University of California, Santa Barbara, said, "It's something that may, in the end, be one of the biggest observations of any new phenomena in our field in the last 30 or 40 years, going way back to the discovery of quarks, for example."[53] Michael Turner, a cosmologist at the University of Chicago and the chairman of the physics center board, said

This is a big moment for particle physics and a crossroads — will this be the high water mark or will it be the first of many discoveries that point us toward solving the really big questions that we have posed?

Dr. Peter Higgs was one of six physicists, working in three independent groups, who in 1964 invented the notion of the cosmic molasses, or Higgs field. The others were Tom Kibble of Imperial College, London; Carl Hagen of the University of Rochester; Gerald Guralnik of Brown University; and François Englert and Robert Brout, both of Université libre de Bruxelles.[53]

Although they have never been seen, Higgslike fields play an important role in theories of the universe and in string theory. Under certain conditions, according to the strange accounting of Einsteinian physics, they can become suffused with energy that exerts an antigravitational force. Such fields have been proposed as the source of an enormous burst of expansion, known as inflation, early in the universe and, possibly, as the secret of the dark energy that now seems to be speeding up the expansion of the universe.[53]

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:00 , Processed in 0.124621 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部