搜索
热搜: music

Overview

2014-3-16 17:03| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: This table shows a summary of regular polytope counts by dimension.Dimension Convex Nonconvex ConvexEuclideantessellations Convexhyperbolictessellations Nonconvexhyperbolictessellations Hyperbolic Tes ...
This table shows a summary of regular polytope counts by dimension.

Dimension    Convex    Nonconvex    Convex
Euclidean
tessellations    Convex
hyperbolic
tessellations    Nonconvex
hyperbolic
tessellations    Hyperbolic Tessellations
with infinite cells
and/or vertex figures    Abstract
Polytopes
1    1 line segment    0    1    0    0    0    1
2    ∞ polygons    ∞ star polygons    3 tilings    1    0    0    ∞
3    5 Platonic solids    4 Kepler–Poinsot solids    1 honeycomb    ∞    ∞    0    ∞
4    6 convex polychora    10 Schläfli–Hess polychora    3 tessellations    4    0    11    ∞
5    3 convex 5-polytopes    0    1 tessellation    5    4    2    ∞
6    3 convex 6-polytopes    0    1 tessellation    0    0    5    ∞
7+    3    0    1    0    0    0    ∞
There are no nonconvex Euclidean regular tessellations in any number of dimensions.

Tessellations
The classical convex polytopes may be considered tessellations, or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:03 , Processed in 0.127471 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部