Mathematics Mathematical objects Table of Lie groups view content

Real Lie algebras

2014-3-16 17:16| view publisher: amanda| wiki(57883.com) 0 : 0

description: Table legend:S: Is this algebra simple? (Yes or No)SS: Is this algebra semi-simple? (Yes or No)Lie algebra Description S SS Remarks dim/RR the real numbers, the Lie bracket is zero 1Rn the Lie brac ...
Table legend:

S: Is this algebra simple? (Yes or No)
SS: Is this algebra semi-simple? (Yes or No)
Lie algebra    Description    S    SS    Remarks    dim/R
R    the real numbers, the Lie bracket is zero                1
Rn    the Lie bracket is zero                n
R3    the Lie bracket is the cross product                3
H    quaternions, with Lie bracket the commutator                4
Im(H)    quaternions with zero real part, with Lie bracket the commutator; isomorphic to real 3-vectors,
with Lie bracket the cross product; also isomorphic to su(2) and to so(3,R)

Y    Y        3
M(n,R)    n×n matrices, with Lie bracket the commutator                n2
sl(n,R)    square matrices with trace 0, with Lie bracket the commutator    Y    Y        n2−1
so(n)    skew-symmetric square real matrices, with Lie bracket the commutator.    Y    Y    Exception: so(4) is semi-simple, but not simple.    n(n−1)/2
sp(2n,R)    real matrices that satisfy JA + ATJ = 0 where J is the standard skew-symmetric matrix    Y    Y        n(2n+1)
sp(n)    square quaternionic matrices A satisfying A = −A*, with Lie bracket the commutator    Y    Y        n(2n+1)
u(n)    square complex matrices A satisfying A = −A*, with Lie bracket the commutator                n2
su(n)
n≥2    square complex matrices A with trace 0 satisfying A = −A*, with Lie bracket the commutator    Y    Y        n2−1
Complex Lie groups and their algebras[edit]

The dimensions given are dimensions over C. Note that every complex Lie group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.

Lie group    Description    CM    \pi_0    \pi_1    UC    Remarks    Lie algebra    dim/C
Cn    group operation is addition    N    0    0        abelian    Cn    n
C×    nonzero complex numbers with multiplication    N    0    Z        abelian    C    1
GL(n,C)    general linear group: invertible n×n complex matrices    N    0    Z        For n=1: isomorphic to C×    M(n,C)    n2
SL(n,C)    special linear group: complex matrices with determinant
1

N    0    0        for n=1 this is a single point and thus compact.    sl(n,C)    n2−1
SL(2,C)    Special case of SL(n,C) for n=2    N    0    0        Isomorphic to Spin(3,C), isomorphic to Sp(2,C)    sl(2,C)    3
PSL(2,C)    Projective special linear group    N    0    Z2    SL(2,C)    Isomorphic to the Möbius group, isomorphic to the restricted Lorentz group SO+(3,1,R), isomorphic to SO(3,C).    sl(2,C)    3
O(n,C)    orthogonal group: complex orthogonal matrices    N    Z2    –        compact for n=1    so(n,C)    n(n−1)/2
SO(n,C)    special orthogonal group: complex orthogonal matrices with determinant 1    N    0    Z  n=2
Z2 n>2        SO(2,C) is abelian and isomorphic to C×; nonabelian for n>2. SO(1,C) is a single point and thus compact and simply connected    so(n,C)    n(n−1)/2
Sp(2n,C)    symplectic group: complex symplectic matrices    N    0    0            sp(2n,C)    n(2n+1)
Complex Lie algebras[edit]

The dimensions given are dimensions over C. Note that every complex Lie algebra can also be viewed as a real Lie algebra of twice the dimension.

Lie algebra    Description    S    SS    Remarks    dim/C
C    the complex numbers                1
Cn    the Lie bracket is zero                n
M(n,C)    n×n matrices, with Lie bracket the commutator                n2
sl(n,C)    square matrices with trace 0, with Lie bracket
the commutator

Y    Y        n2−1
sl(2,C)    Special case of sl(n,C) with n=2    Y    Y    isomorphic to su(2) \otimes C    3
so(n,C)    skew-symmetric square complex matrices, with Lie bracket
the commutator

Y    Y    Exception: so(4,C) is semi-simple, but not simple.    n(n−1)/2
sp(2n,C)    complex matrices that satisfy JA + ATJ = 0
where J is the standard skew-symmetric matrix

Y    Y        n(2n+1)

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2014-3-16 17:16 , Processed in 0.074072 second(s), 17 queries .

57883.com service for you! X3.1

Back to top